Adenosine modulates HIF-1{alpha}, VEGF, IL-8, and foam cell formation in a human model of hypoxic foam cells.

نویسندگان

  • Stefania Gessi
  • Eleonora Fogli
  • Valeria Sacchetto
  • Stefania Merighi
  • Katia Varani
  • Delia Preti
  • Edward Leung
  • Stephen Maclennan
  • Pier Andrea Borea
چکیده

OBJECTIVE Foam cell (FC) formation by oxidized low-density lipoprotein (oxLDL) accumulation in macrophages is crucial for development of atherosclerosis. Hypoxia has been demonstrated in atherosclerosis and hypoxia-inducible factor-1 (HIF-1) has been shown to promote intraplaque angiogenesis and FC development. As hypoxia induces HIF-1alpha stabilization and adenosine (ado) accumulation, we investigated whether this nucleoside regulates HIF-1alpha in FCs. METHODS AND RESULTS Ado, under hypoxia, stimulates HIF-1alpha accumulation by activating all adenosine receptors (ARs). HIF-1alpha modulation involved extracellular signal-regulated kinase 1/2 (ERK 1/2), p38 mitogen-activated protein kinase (p38 MAPK), and protein kinase B (Akt) phosphorylation in the case of A(1), A(2A), A(2B), and ERK 1/2 phosphorylation in the case of A(3) receptors. Ado, through the activation of A(3) and A(2B) receptors, stimulates vascular endothelial growth factor (VEGF) secretion in a HIF-1alpha-dependent way. Furthermore, ado, through the A(2B) subtype, induces an increase of Interleukin-8 (IL-8) secretion in a ERK 1/2, p38, and Akt kinase-dependent but not HIF-1alpha-mediated way. Finally, ado stimulates FC formation, and this effect is strongly reduced by A(3) and A(2B) blockers and by HIF-1alpha silencing. CONCLUSIONS This study provides the first evidence that A(3,) A(2B), or mixed A(3)/A(2B) antagonists may be useful to block important steps in the atherosclerotic plaque development ado-induced.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adenosine Modulates HIF-1 , VEGF, IL-8, and Foam Cell Formation in a Human Model of Hypoxic Foam Cells

(p38 MAPK), and protein kinase B (Akt) phosphorylation in the case of A1, A2A, A2B, and ERK 1/2 phosphorylation in the case of A3 receptors. Ado, through the activation of A3 and A2B receptors, stimulates vascular endothelial growth factor (VEGF) secretion in a HIF-1 –dependent way. Furthermore, ado, through the A2B subtype, induces an increase of Interleukin-8 (IL-8) secretion in a ERK 1/2, p3...

متن کامل

Inhibitory effect of Cinnamon on prevention of foam cell formation in platelet and monocytes co-culture

Introduction: Atherosclerosis is one of the leading causes of cardiovascular disease. Following endothelial damage and platelet aggregation in that area and the recruitment of monocytes and their conversion to macrophages, LDL gradually accumulates under the endothelial artery wall and gradually oxidized and convert to oxi-LDL. By swallowing it, the macrophages turn into foam cell and then athe...

متن کامل

Caffeine inhibits adenosine-induced accumulation of hypoxia-inducible factor-1alpha, vascular endothelial growth factor, and interleukin-8 expression in hypoxic human colon cancer cells.

Frequent coffee consumption has been associated with a reduced risk of colorectal cancer in a number of case-control studies. Coffee is a leading source of methylxanthines, such as caffeine. The induction of vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8) is an essential feature of tumor angiogenesis, and the hypoxia-inducible factor-1 (HIF-1) transcription factor is known to...

متن کامل

TREM-1 is a positive regulator of TNF-α and IL-8 production in U937 foam cells.

The purpose of our study was to investigate the expression levels of TREM-1 (triggering receptor expressed on myeloid cells-1) in U937 foam cells and determine whether TREM-1 regulates the production of tumor necrosis factor-alpha and interleukin-8 in these cells. Human U937 cells were incubated with phorbol 12-myristate 13-acetate and then oxidized human low-density lipoprotein to induce foam ...

متن کامل

Physiological role of adenosine and its receptors in tissue hypoxia-induced

It is well known that the metabolic factors play an important role in the regulation of angiogenesis. Increased metabolic activity leads to decreased oxygen levels and causes tissue hypoxia. Hypoxia starts different signals to stimulate angiogenesis and promotes oxygen delivery to tissues. It has been suggested that released adenosine from hypoxic tissues plays a vital role in angiogenesis. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 30 1  شماره 

صفحات  -

تاریخ انتشار 2010